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Abstract 

 The growing risk that tin whiskers pose to the reliability of electronic assemblies has 

driven the need for a risk assessment tool.  In this paper a mathematical model has been 

developed to calculate the displacement and stress response of a tin whisker to a harmonic 

input.  The model is based on Euler-Bernoulli beam theory and utilizes the method of 

eigenfunction expansion to calculate the forced response solution.  The model was then 

coded into Matlab to calculate numerical solutions for a variety of parameters.  To enhance 

the accuracy of the model tin whisker samples were prepared and measured with a 

microtribometer.  The whiskers were loaded traversly with a rigid probe tip and the normal 

and tangential forces were measured.  The whiskers appeared very rigid and did not grossely 

fracture remaining attached to the substrate.  They deformed near the root or in the 

surrounding tin plating where the whisker grew.  The mean deformation stress calculated was 

505 MPa although there were not enough measurements for statistical significance.  The 

range of values was quite large relative to the mean.  The high variability was primarily 

attributed to the small sample size of 3 valid measurements, the small magnitude of the 

forces relative to the tolerance of the microtribometer and the crystal orientation of the 

whisker itself.  
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1. Introduction 

 Tin whiskers are very pure crystalline tin structures found growing from 

electrodeposited tin surfaces [1].  With growth potential exceeding that of lead pitch on 

modern electronics, and the ability to create electrical shorts they represent an ever growing 

risk to the functionality and long term reliability of military electronics.   

 
Figure 1  Tin whisker growing on the inside of a mounting hole 

 

1.1 History 

 Tin whiskers and the phenomenon of metal whiskers in general are not new.  The first 

reported case of the phenomenon was in 1946.  Cadmium whiskers were causing electrical 

shorts in World War II era military equipment.  Tin and Zinc platings were used in lieu of 

cadmium but in 1952 these plating were also found to exhibit the whisker phenomenon.  In 

the 50s and 60s Bell Labs experimental with alloying tin to prevent whisker growth and 

found that 0.5% to 1% lead by weight inhibited whisker growth in tin coatings [2].  

Following failures in the late 80s and early 90s attributed to tin whiskers, the US military 
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started prohibiting the use of pure tin in military electronics [3].  Recently however 

governing bodies in Japan and Europe have pushed initiatives to reduce the use of hazardous 

materials such as lead, the primary alloy element for tin plating [1].  As of 2006 the European 

Union has fully enacted the legislation Reduction of certain Hazardous Materials (RoHS) and 

Waste Electronic and Electrical Equipment (WEEE) requiring the most lead be removed 

from electronic equipment [4].  This has lead to electronic component manufacturers 

replacing more traditional tin-lead alloy plating with pure tin plating.  Pure tin plating carries 

with it excellent corrosion resistance, and solderability attributes as well as being relatively 

simple to adapt a tin-lead system to.  The vast majority of component vendors seeking to 

meet RoHS and WEEE standards have switched to pure tin plating because of these desirable 

attributes.   

 

1.2 Attributes 

 As previously stated tin whiskers are long crystalline filaments that grow from tin 

plated surfaces.  They have been reported in many shapes such as straight, kinked, spiral, 

nodules and hillocks [5].  A very unique shaped whisker is shown in figure 2.  They can grow 

as long as 10 mm but are found far more commonly at lengths of 1 mm or less [1],[2]. Their 

diameter can range from .006 µm to 10 µm, but are more typically observed at 1-4 µm.  

Striations can be seen running the length of the whisker so the true cross section is best 

described as a rosette [6].  Growth rates of whiskers are reported to be .03-9 mm per year, 

with growth densities from single whiskers to 104 per square centimeters.  Mechanical 

properties have been reported to be high in the axial direction due to the high purity 

crystalline structure, but low in the shear direction.  Whiskers also have the ability to carry 

currents of up to 75 mA continuously depending on diameter, and much high then this 

momentarily before fusing due to the heat generated[1]. 
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Figure 2  A “?” shaped tin whisker (spiral type) 

 

1.3 Growth Mechanism 

 Although no specific mechanism is known to cause whisker growth there are many 

factors that are generally agreed upon that contribute to whisker growth, as well as some 

agreed to not influence the growth.  Growth contributors are: residual stress in the tin plating, 

compressive stressed such as those imparted by a screw or substrate deformation, stresses 

induced by thermal cycling, temperature raging from 50 to 140 Celsius, and organic additives 

use in bright tin plating.  Whiskers have been shown to grow regardless of factors such as 

applied current, or electric field, moisture or atmospheric pressure [3].  One thing that is 

know about the growth of whiskers is the growth occurs from the base of the whisker like an 

extrusion rather that at the tip like more traditional crystal formation.  Additionally the tin 

local to the whisker is not depleted by its growth indicating that the growth is fed by a 

diffusion mechanism through or across the lattice of the plating.  Recent tests using tin 

isotopes as tracers and Secondary Ion Mass Spectroscopy (SIMS) has shown that there is a 

long range diffusion of tin across the surface lattice of the plating to the site of the whisker, 

and relatively little diffusion through the body lattice [7].  
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1.4 Risks 

 There are 4 primary risks posed by growth of tin whiskers in electronic assemblies. 

The first is continuous short circuiting in low current applications (< 50 mA).  The second is 

transient shorting of higher current applications (> 50 mA).  Whiskers have been shown to 

cause momentary glitches in higher current applications before fusing open.  The third is 

contamination or interference with sensitive components in the assembly.  If a whisker 

breaks loose of its substrate it may travel throughout the enclosure and impede the 

functionality of sensitive optics or micro and nano-electromechanical systems.  The fourth if 

by far the more dangerous and spectacular risk however it requires a space based application.  

In a vacuum a whisker that shorts a high current circuit may vaporize and form a metal 

vapor, or plasma.  This plasma is capable of caring hundreds of amperes of current 

continuously and can lead to total system failure and gross destruction of entire electronic 

enclosures.  Metal vapor arcing of a tin whisker has been attributed as the failure of 3 

commercial satellites [1], [3].   

 
Figure 3  Electrical short casued by a 2mm long tin whisker 
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1.5 Risk Analysis 

 Due to the hazards that tin whiskers present to electronic assemblies it becomes 

necessary to assess the risk to a system if tin whiskers are discovered to be growing.  This 

has occurred on legacy products when the risk of tin whiskers was not mitigated.  It has also 

occurred when tin plating chemistry went out of specification, resulting in plating with 

insufficient alloying elements to inhibit whisker growth.  Various considerations can be made 

with regards to geometry of whiskers and components, as well as severity of failures if a 

whisker were to short a circuit.  An important factor that is hard to quantify is the risk that a 

whisker will break free of its substrate given a particular geometry and environment of 

dynamic inputs such as mechanical shock and vibration.  To assess this risk a model of the 

whiskers’ dynamic response and stress levels must be developed.  Additionally whisker 

properties such as modulus of elasticity and ultimate strength must be know with enough 

accuracy to render the model useful. 
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2. Tin Whisker Modeling 

2.1 Introduction 

 To determine the modeling method most suited to that of a tin whisker the basic 

requirements of the model were listed. 

1. Model should yield displacements of the whisker for use in stress calculations 

2. Model should be able to handle various forced inputs, particularly harmonic 

inputs 

3. Model should be implemented in a software package to make then analysis of 

varying geometries, or inputs simple to recalculate. 

Review of the literature revealed substantial work in the area of tin whiskers, but all of it 

related to growth theories and mitigation techniques.  Work related to modeling the physical 

response of whiskers to dynamic inputs was not found. 

 Inspection of the parameters of a typical tin whisker reveals very long, thin, straight 

structures, with basically uniform cross-sections attached free standing to a substrate.  The 

intuitive choice was to model the whisker as a cantilevered beam of uniform cross section.  

An abundance of literature exists on various theories and methods to model traversely 

vibrating beams such as: Euler-Bernoulli[8], Rayleigh[9], Shear[9], Timoshenko [10], [11], 

as well as more specific applications such as simplifications of Timoshenko theory to reduce 

computational effort [12] among others.  Han, Benaroya and Wei [9] present a complete 

development of four engineering theories including the most widely used, the Euler-

Bernoulli and Timoshenko Beam theories.  The Euler-Bernoulli theory also know as the 

classic beam theory, is simple and generally provides reasonable engineering estimated of 

displacement especially in longer, slender beams.  It is based on the single largest factor in 

beam displacement, bending moment, while ignoring other effects.  The Timoshenko theory 

improves upon the Euler-Bernoulli theory my adding the effect of shear and rotation.  This is 

especially important for non slender beams where the effects of shear and rotation are more 

dominant in the governing equation.  Han et al has compiled and compared the frequency 

curves for all for theories and recommend that when slenderness ratio is larger then 100 the 

Euler-Bernoulli model can be used with similar results to the other models, where as beams 
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with lower slenderness ratios should be handled with the Shear or Timoshenko theory to 

maintain high accuracy.  Since tin whiskers are generally 1-4 µm in diameter and up to 1000 

µm or longer, the slenderness ratio of whiskers that pose the greatest risk to electronic 

components will also have slenderness ratios greater than 100.  For this reason the Euler-

Bernoulli beam theory was chosen.  The full derivation of the governing equation using 

Euler-Bernoulli is available in many text books [13, 14] and will not be shown here.  The 

governing equation is a linear fourth order non-homogeneous partial differential equation.  

The basic technique used to solve this will be eigenfunction expansion, also known as mode 

superposition.  The homogeneous form of the governing equation will be solved yielding 

eigenvalues and eigenfunctions of the problem.  Then time based functions, called principle 

coordinates will be determined and used in conjunction with the eigenfunctions to formulate 

the total solution. 

2.2 Modeling 

2.2.1 Governing Equation 

 Starting with the Euler-Bernoulli governing equation for elastic bending of a beam 

gives 

 
( )

2 2 2 2

2 2 2 2
,

u u u
A EI f x t

t x x x
ρ µ

 ∂ ∂ ∂ ∂
− + = ∂ ∂ ∂ ∂  . (1) 

Inspection of whisker geometry shows the cross-section to be independent of length. 

Assuming the modulus of elasticity is also independent of length yields 

 
( )

2 2 4

2 2 4
,

u u u
A EI f x t

t x x
ρ µ

∂ ∂ ∂
− + =

∂ ∂ ∂ . (2) 

Taking the homogeneous form of equation 2 and neglecting the tension in the beam (µ=0) we 

can rewrite 

 

2 4
2

2 4
0

u u
c

t x

∂ ∂
+ =

∂ ∂ , (3) 

where the constants have been combined into a single value defined as 
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EI
c

Aρ
=

. (4) 

2.2.2 Separation of Variables 

 Equation 3 is a separable differential question and can be solved by assuming a 

solution of the form 

 ( , ) ( ) ( )u x t T t U x= . (5) 

Substituting equation 5 into equation 3 and rearranging yields 

 

2 4 2

4 2

( ) 1 ( )

( ) ( )

c U x T t

U x x T t t

∂ ∂
= −

∂ ∂ . (6) 

Since both sides of equation 6 are equal, they must also be equal to a constant.  Setting both 

sides of equation 6 equal to a constant; further simplifications are made to complete the 

separation of variables 

 

4 2
4 2

4 2

( ) ( )
( ) 0, ( ) 0

U x T t
U x T t

x t
β ω

∂ ∂
− = + =

∂ ∂ , (7, 8) 

where the constants have again been combined into a single value defined as 

 

2
4

2c

ω
β =

. (9) 

2.2.3 Homogeneous Solution 

The general solution to equations 7 and 8 are given by: 

 0 1 2 3( ) sin cos sinh coshU x a x a x a x a xβ β β β= + + + , (10) 

 4 5( ) sin cosT t a t a tω ω= + , (11) 

where ai are constant coefficients.  The boundary and initial conditions are used to solve for 

the unknown coefficients.  In this case we are only interested in the spatial solution, as it will 

yield the eigenvalues and eigenfunctions used in the non-homogeneous problem. 

 Boundary conditions for a cantilever beam are clamped at the base with zero 

displacement or slope and free at the opposite end with no moment or shear.  These boundary 

conditions are written 
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2 3

2 3

(0) ( ) ( )
(0) 0

U U l U l
U

dx dx dx

∂ ∂ ∂
= = = =

. (12) 

 

Substituting equation 12 into equation 10 will yield four simultaneous equations that can be 

assembled into matrix form 

 

0

1

2

3

0 1 0 1 0

1 0 1 0 0

sin( ) cos( ) sinh( ) cosh( ) 0

cos( ) sin( ) cosh( ) sinh( ) 0

a

a

al l l l

al l l l

β β β β
β β β β

    
    
    =
    − −
    

−     . (13) 

Since we are only interested in the non-trivial solutions to equation 13 we set the determinant 

of the 4 x 4 matrix equal to zero and simplify yielding the frequency equation 

 cos( )cosh( ) 1 0l lβ β + = . (14) 

The frequency equation has an infinite number of solutions called eigenvalues.  The first 

three solutions representing the first three modes of natural frequency are shown in table 1.  

These values have been verified in reference 9 and 14. 

 

Table 1  First 5 eigenvalues 

n 1 2 3 4 5 

βnl 1.8751 4.6941 7.8548 10.9955 14.1372 

 

 

For each eigenvalue there is an associated eigenfunction, a unique set of coefficents ai, and a 

natural frequency that can be determined from equation 9.  To determine the eigenfunctions 

the coefficients of equation 13 can be reduced from four to one and gives a simple form 

 
( ) ( )( ) sin sinh cos coshn n n n n n nU x a xβ β α β β = − − −  , (15) 

Where coefficient αn is defined as 

 

sin sinh

cos cosh
n n

n
n n

l l

l l

β β
α

β β
 +

=  
+  , (16) 

and the index n represents correlation with the “nth” eigenvalue. 
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 An important property of eigenfunctions that will prove useful is orthogonally.  The 

full derivation of orthogonally of eigenfunctions is presented in reference 9 and the resulting 

equation is 

 0

( ) ( )
l

m n mnU x U x dx δΤ =∫
, (17) 

where δmn is the kronecker delta. 

2.2.4 Non-homogeneous Solution 

Reverting to the non-homogeneous governing equation 2 and again neglecting tension in the 

beam yields 

 
( )

2 4

2 4
,

u u
A EI f x t

t x
ρ

∂ ∂
+ =

∂ ∂ . (18) 

 For the method of eigenfunction expansion assume a solution of a series summation 

of temporal and spatial functions.  Specifically the spatial forms are the eigenfunctions found 

in the homogeneous solution and are combined with the temporal functions to yield the total 

solution 

 1

( , ) ( ) ( )n n
n

u x t t U xη
∞

−

= ⋅∑
. (19) 

Although the assumed solution looks similar to equation 5 the non-homogeneous governing 

equation is no longer separable so a new technique must be employed to find the temporal 

solutions.  Substituting equation 19 into equation 18 yields 

 
( )

2 4

2 4
1 1

( ) ( )
( ) ( ) ,n n

n n
n n

t U x
U x A t EI f x t

dt dx

η
ρ η

∞ ∞

− −

∂ ∂
⋅ + ⋅ =∑ ∑

. (20) 

At this point equation 7 developed in the homogeneous solution can be brought back and 

rewrote to yield 

 

4
2

4

( )
( )n

U x
EI A U x

x
ω ρ

∂
⋅ = ⋅ ⋅
∂ . (21) 

Substituting equation 21 into equation 20 yields the following simplification now with only 

first order spatial functions 
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( )

2
2

2
1 1

( ) 1
( ) ( ) ( ) ,n

n n n
n n

t
U x t U x f x t

dt A

η
η ω

ρ

∞ ∞

− −

∂
⋅ + ⋅ ⋅ =∑ ∑

. (22) 

Since equation 22 now contains only first order eigenfunctions, the orthogonally condition 

can be used to decouple the principle coordinates.  Multiplying the equation 22 by Um(x) and 

integrating across the domain to obtain 

 
( )

2
2

2
1 10 0

( ) 1
( ) ( ) ( ) ( ) ( ) ,

l l
n

m n n n m
n n

t
U x U x t U x U x f x t

dt A

η
η ω

ρ

∞ ∞

− −

 ∂
⋅ + ⋅ ⋅ = 

 
∑ ∑∫ ∫

, (23) 

which decouples the principle coordinates 

 

2
2

2

( ) 1
( )n

n n n

t
t Q

dt A

η
ω η

ρ
∂

+ =
, (24) 

where Qn is the generalized force which is associated with the generalized coordinate and is 

defined as 

 
( )

1

0

( ) ,n nQ U x f x t dx= ⋅∫
. (25) 

 We have now uncoupled the principle coordinates from the eigenfunctions.  The 

result is a linear second order non-homogeneous differential equation that can be solved by 

finding a particular solution and the general solution to the homogeneous form of the 

equation.  Since the forcing function is harmonic the solution is also assumed to be harmonic.  

A particular solution of the following form is assumed 

 ( ) sin( )n t X tη = Ω  (26) 

Substituting equation 26 into equation 24, X can be solved for 

 
2 2

1

sin( )( ) n
n

X Q
A tρ ω

=
Ω −Ω . (27) 

Substituting equation 27 into equation 26 and combining with the general solution to the 

homogeneous form of equation 24 yields the total equation for the principal coordinates 

 
2 2

1
cos sin

( )n n n n n n
n

A t B t Q
A

η ω ω
ρ ω

= ⋅ + ⋅ +
−Ω . (28) 

 The first two terms of equation 28 represent the free vibrations resulting from initial 

conditions, where as the third terms represents the steady state vibrations resulting from the 
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forcing function.  To determine the coefficients An and Bn the initial conditions must be 

transformed in terms of nη .  Starting with equation 19 and again multiply by Um(x) and 

integrating over the domain yields the relation 

 0

( ) ( ) ( , )
l

n mt U x u x t dxη = ⋅ ⋅∫
. (29) 

Applying the initial conditions to equation 28 yields the following expressions 

 0 0

(0)
(0) ( ) ( ,0) , ( ) ( ,0)

l l
n

n m m

d du
U x u x dx U x x dx

dt dt

η
η = ⋅ ⋅ = ⋅ ⋅∫ ∫

 (30, 31) 

which can be used to solve for An and Bn. 

 To determine the values for An evaluate equation 28 at zero time and set the result 

equal to equation 30.  Rearranging yields the equation for An.  To determine the values of Bn 

follow the same procedure but take the first derivative of equation 28 and set the result equal 

to equation 31.  Rearranging yields the equation for Bn 

 

( )
0

1

2 2
0 0

1
( ) ( ,0) ( ) ,

( )

t
l

n m n
n

A U x u x dx U x f x t dx
Aρ ω ω

=
 

= ⋅ ⋅ − ⋅ 
−   

∫ ∫
, (32) 

 

( )
0

1

2 2
0 0

1 1
( ) ( ,0) ( ) ,

( )

t
l

n m n
n n

du d
B U x x dx U x f x t dx

dt dt Aω ρ ω ω

=    = ⋅ ⋅ − ⋅   −    
∫ ∫

. (33) 

 Combining the principle coordinates (equation 28) with the eigenfunctions (equation 

15) into the assumed solution (equation 19), will yield the total solution to the non-

homogeneous equation. 

 

2.2.5 Dynamic Moment and Stress 

 To determine the stress on the root of the whisker the effective dynamic moment must 

be calculated.  This is accomplished using equation 19 and the relation between moment and 

deflection defined by Euler-Bernoulli beam theory given by 

 
( )

2

2
,

u
M x t EI

x

∂
=

∂ . (34) 
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Using equation 34 and basic whisker properties the bending stress can be calculated by 

 

( ),
bending

M x t c

I
σ

⋅
=

 (35) 

2.3 Numerical Implementation and Optimization 

 To make the calculations described in the previous section manageable as well as 

flexible enough vary parameters such as whisker geometry, forcing function, and model 

parameters, the equations were coded into Matlab, a commercially available technical 

computing software package.  The complete code is presented in appendix A.  Specific 

details of the implementation and model optimization are discussed below. 

 

2.3.1 Force Implementation 

 To numerically implement the generalized force of equation 25 the forcing function 

must be cast dimensionally in terms described by the governing equation.  The form of the 

forcing is assumed to be harmonic application of Newtons at a defined frequency.  One 

typical forcing function environment of interest to electronics design is sinusoidal vibration.  

Sinusoidal vibration is typically defined as an acceleration loading specified as Gravities with 

a dwell frequency.  This condition is not given in terms of force directly.  Additionally the 

loading is not applied directly to the whisker but rather the substrate.  Since the loading is 

applied to the substrate one option is to treat the loading as a boundary condition, and solve 

as a free vibration problem.  This yields a homogeneous governing equation but non-

homogeneous boundary conditions.  To solve this type of problem substitutions are made that 

result in homogeneous boundary conditions, with the governing equation reverting back to a 

non-homogeneous form [15].  This method, although valid, was deemed unnecessarily 

complex and a simpler method was used.  If the forcing is applied in one direction to the 

substrate with a whisker at rest it can be seen that an equal and opposite reactionary inertial 

load will be applied to the whisker.  Using this methodology the accelerations can be treated 

as direct inertial loads distributed along the length of the whisker.  
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2.3.2 Time Resolution 

 To plot the numerical solution to whisker displacement and stress a time variable was 

set to start at zero time and increase by some incremental time step.  Because the frequency 

of forcing is typically specified from 100 to 2000 Hz [16] selection of an appropriate time 

step is important to capture the displacement waveform.  This is similar to electrical signal 

processing where Nyquist sampling rate is used to capture full waveforms.  Nyquist found 

that the ideal rate of sampling was 2 times the frequency of the wave form you are tying to 

measure.  Practically speaking however a value slightly above will yield the best results [17, 

18].  For the case of a vibrating beam, the response frequency will never be greater than the 

forcing function.  For this reason the time step was set at 2.1 times the forcing frequency. 

 

2.3.3 Eigenvalue Optimization 

 The number of eigenvalues used in the solution will affect both the accuracy of the 

solution and the computation time.  To find the optimum balance the code was set to loop 

from one eigenvalue to fifty, each time finding the maximum and minimum whisker 

displacement at the tip.  This plot can be seen in figure 4. 
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Figure 4  Convergence of displacement solution vs. eigenvalues 

 

Since the contribution of eigenvalues beyond about 12 or 13 is insignificant the model was 

set to run 15 eigenvalues to optimize computation time. 

 

2.4 Results 

 Results for a selected set of inputs along with parameter variation are presented. 

2.4.1 Sinusoidal Vibration Input 

 The displacement and stress responses to sinusoidal inputs are presented in figures 5 

and 6.  The inputs used were a 5Gs dwell at 2000 Hz, and a 5G dwell at 10% below the first 

whisker resonance, 9777 Hz.  The whisker geometry used for these results was 1 mm length 

and a 2 µm diameter.  The density and modulus used was for that of beta phase tin.   
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 The first run of a 5G dwell at 2000 Hz yielded maximum displacements of 15.5 µm 

and maximum stresses of 24.4 MPa.  The response frequency of the whisker was 311.1 Hz. 

 

 
Figure 5  Displacement and stress response to 5G sinusoidal forcing at 2000 Hz 

 

 The second run of a 5G dwell at 9777 Hz, 10% below the first resonance of the 1000 

µm whisker, yielded maximum displacements of 130.5 µm and maximum stresses of 113.9 

MPa.  The response frequency of the whisker was 1555.5 Hz. 
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Figure 6  Displacement and stress response to 5G sinusoidal forcing at 9777 Hz 

 

2.4.2 Parameter Variation 

 Next the model was reset with typical whisker values of 1000 µm length, 2 µm 

diameter, and 5G sinusoidal forcing at 2000Hz.  Then one by one the parameters were varied 

to see the dependence of the displacement and the stress on that parameter.  The parameters 

were varied according to table 2.  

 

Table 2  Parameter variation values 

Parameter Minimum Maximum Increment 

Forcing (G) 1 10 1 

Frequency (Hz) 100 10,000 100 

Diameter (µm) 1 10 1 

Length (µm) 100 10,000 100 
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Figure 7  Forcing amplitude dependence of displacement and stress 

 
Figure 8  Frequency dependence of displacement and stress 
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Figure 9  Whisker diameter dependence of displacement and stress 

 
Figure 10  Whisker length dependence of displacement and stress  
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 To give a better overall view of the response of typical whisker lengths and diameters 

to 5G sinusoidal forcing at 2000 Hz, both diameters and lengths were varied and plotted. 

 
Figure 11  Peak displacement response across a wide rage of diameters and lengths 
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Figure 12  Stress response across a wide rage of diameters and lengths 

2.5 Discussion 

2.5.1 Model 

 To verify the numerical outputs the governing equation was non dimensionalized.  

The coefficients were then collected to give a non-dimensional scaling factor for comparison.  

The following non dimensional parameters were established, 

 2

x t EI u

l l A
χ τ υ

ρ
= = =

Β , (36, 37, 38) 

and substituted into equation 2.  Again neglecting tension in the beam yielded, 

 
2 4

4
2 4

( , )
A

l F
EI

υ υ ρ
χ τ

τ χ
 ∂ ∂

Β + = ∂ ∂ 
. (39) 

B was chosen as, 
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4

4
2

16A l
l

EI d E

ρ ρ
Β = = . (40) 

Equation 40 was substituted into equation 38 which yielded, 

 
4

2

16l
u

d E

ρ
υ= . (41) 

Now the relation between the dimensional displacement and the non dimensional parameters 

length and diameter were compared.  With a 5 G sinusoidal forcing at 2000 Hz the forms of 

the numerical outputs and the non dimensional parameters were plotted to assure the model 

was behaving as expected. 

 

 
Figure 13  Comparison of diameter dependence to nondimensional parameter 
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Figure 14  Comparison of length dependence to nondimensional parameter 

 

Since the basic relationships of the non dimensional parameter held true to the numerical 

outputs the model was verified. 

2.5.2 Parameter Variation 

 Figure 11 and 12 were plotted to get a broad picture of the response of tin whiskers to 

the highest typical forcing they will experience.  The x-axis covers the range of whisker 

lengths reported from 0 to 10,000 µm (10 mm).  The y-axis covers the range of whisker 

diameters reported from 1 to 10 µm.  The first row of peaks represents the first resonant 

mode in response to the 5G 2000 Hz forcing.   The amplitude of the peaks is a function how 

close the discrete length plotted falls to the natural frequency and should not be considered 

important.  The second row of peaks represents the second mode response.  The value of 

these two plots is they quickly show the length and width combinations where tin whiskers 

will start to resonance and be subject to greater resulting stresses. 
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3. Tin Whisker Property Measurement 

3.1 Introduction 

 Whisker properties such as yield and ultimate strength are critical to the accuracy in 

the analysis of whisker dynamics.  A literature survey was preformed to determine if there 

were other studies of tin whisker properties.  The vast majority of literature on tin whiskers 

relates to the growth mechanism, but one source was discovered where an attempt to measure 

tin whisker properties was made.  Dunn [19] in 1988 harvested whiskers approximately 0.5 

mm long and embedded them in a mound of either epoxy or indium solder on glass 

microscope slides.  Then 40 µm diameter gold wire was cut into known lengths and formed 

into a hook on one end then hung onto the cantilevered whiskers.  The optically measured 

displacement was used along with the weight of the wire to calculate modulus of elasticity.  

Tensile strength was measured in a similar way using a gold wire hook on one end to anchor 

the whisker, and another on the other end to add additional wire lengths as weights. 

 Modern measurement method such as Atomic Force Microscopy (AFM) and 

Mictotribology offers a much more precise and repeatable way to measure micro and nano 

structures. 

3.2 Experimental Design 

 The experimental design was to bend a tin whisker to the point of fracture and to 

measure the load.  The data would then be used to calculate the yield and ultimate strength.  

The substrates with whisker growths were surveyed for typical whisker geometries present.  

The longest whiskers surveyed were around 100 µm long with diameters of 4-6 µm.  Rough 

order of magnitude calculations using the ultimate tensile strength of beta phase tin show the 

force required to break whiskers of this length would be expected in the range of 1000-3000 

nN.  Since the AFM has a typical capacity of 200 nN it is not capable of performing the 

experiment.  The microtribometer on the other hand is capable up to 200 mN so the force 

required is very low in its working range.  Considering the structure of the whisker to be a 

very pure single crystal free of most impurities or defects it is logical to assume the strength 

is likely to be higher than that of a macro sized sample used for typical tensile tests.   
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 The microtribometer used was custom built by Iowa State University based on 

Bhushan and colleagues and a schematic of the major components can be seen in reference 

20.  The basic design an armature composed of crossed I beams with semiconductor strain 

gages.  Custom designed probe tips can be bonded to a small screw and attached to the 

armature with a nut.  For the whisker test a thin rigid probe tip was desired.  A stainless steel 

blade was bonded to a hex head bolt with high strength epoxy adhesive as seen in figure 15.   

 
Figure 15  Stainless steel blade used for probe tip 

 

 The armature was attached to a vertical actuation stage for positioning the tip relative 

to the height of the whisker.  The sample was placed on a horizontal stage perpendicular to 

the armature.  This stage was used to bring the tip in contact with the whisker and perform 

the test.  A stereomicroscope was used from the vertical position to roughly align the probe 

tip and the sample.  Another microscope hooked up to a digital camera and computer was 

used to align the tip to the whisker.  The focal plane was used to make depth of field 

refinements to the initial alignment provided by the stereomicroscope.  This microscope also 

preformed the image capture.  A picture of the setup can be seen in figure 16. 
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Figure 16  Experimental setup 

3.3 Sample Preparation 

 Whisker samples were prepared from test boards that have undergone unrelated 

testing.  The boards each had 12 or more dual inline package (DIP) integrated circuits (IC) 

with tin plated lead frames.  The tin plating on the lead frames had begun growing whiskers, 

and by surveying the boards solitary whiskers of significant length were identified.  The 

identified leads were clipped from the board and affixed to a scanning electron microscope 

(SEM) mount using carbon tape.  The whiskers were oriented vertically for optimum use in 

the experimental setup.  The mounts were then placed in the SEM for measurement.  The full 

set of SEM images can be seen in appendix B, and one is presented here for reference.  At 30 

times magnification the whisker is just barely visible.  At 800 times magnification the 

whisker’s form (straight with a slight curl on the tip), and the striations running the length of 

the body are visible.  The whisker length is 109.5 µm and diameter is 6.86 µm. 

 

Stereomicroscope 

Capture microscope 

Horizontal stage with sample 
Vertical stage with armature 
and probe tip 
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Figure 17  30x magnification of whisker on edge of lead 

 
Figure 18  800x magnification of whisker 
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3.4 Results 

 The method used to perform the test was to align the probe tip relatively low on the 

whisker without touching the substrate surface.  The reason for seeking a low contact point 

was to reduce the lever arm and increase the forces required to break the whisker making the 

measurement easier to resolve.  The normal force of the probe was monitored to assure no 

contact was made with the substrate.  The sample was then moved toward the probe in 2 µm 

increments until the probe had passed over the whisker entirely.  Figure 19 presents a 

sequence of image captures representing the test process. 

 
Figure 19  Incremental steps of whisker test on whisker sample 3 

  

 Both the normal and tangential forces were recorded throughout the test.  The 

tangential force was measured relative to the direction of motion, meaning an increasing 

tangential force was plotted as an increasing negative number.  The raw data is presented 

along with a plot of the moving average to filter out some of the noise. 
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Figure 20  Tangential force, whisker sample 3 

 

 The two larger “noisy” lobes on the left and right represent time the probe was not in 

contact with the whisker.  The tighter band in the center represents the time the probe was in 

contact and deforming the whisker.  The noise seen in the data when the probe is not in 

contact with the whisker is probe oscillation due to acoustic vibration or structural vibration 

not filtered by the table.  The peak tangential force measured during whisker contact was 

21.8 µN. 

 Since whisker sample 3 presented did not break off a secondary method was 

employed to see if the force could be measured while the whisker broke.  The sample was 

reset as before but this time the probe was brought down and placed in contact with the 

substrate with a minimal amount of normal force.  The sample was then moved toward the 

probe again at 2 µm increments until the whisker had moved completely past the probe.  In 

this case the tangential force is actually the frictional force. 
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Figure 21  Frictional force, whisker sample 3 

 

 It should be noted that when the probe tip is in contact with the substrate it is 

stabilized and the data is not as noisy, and does not require a moving average.  The data from 

0 to the vertical jump just before 1000 was the friction force with the substrate.  Data from 

1000 to approximately 3000 was the contact with the whisker.  After 3000 the probe lost 

contact with the substrate and the noisy oscillations can be seen again as in figure 20.  To 

calculate the frictional force attributed to the whisker the frictional force prior to contact must 

be calculated and removed from the portion of the data where the probe was also in contact 

with the whisker.  Using this method the frictional force attributed to the whisker alone was 

187.2 µN.  This was more than measured previously, but contact point was also much lower 

to the base which would lead to an increased force.  Although this method seemed to work 

reasonably well it was abandoned due difficulties with plating irregularities and questions 

about test isolation between the target whiskers and other shorter surrounding whiskers.  
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 The remaining whiskers were tested with the non contact tangential force 

measurement method.  The first 3 samples were tested at 2 µm increments, and the remaining 

4 samples were tested with a linear pass of 250 µm at a rate of 1000 µm per second.  By 

running the test with a short linear sweep less noise was introduced into the data.  As seen in 

figure 22 the spike in tangential force is much clearer. 

 
Figure 22  Tangential force, whisker sample 5 

 

 Once the peak tangential forces were found for each sample whisker the bending 

stress was calculated based on the geometry using static beam equations.  A summary of the 

sample geometries, peak tangential forces, and calculated stresses is presented in table 3.  

Complete sample image, and force data is presented in appendix C. 
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Table 3  Summary of whisker geometry, peak force, and stress 

Sample L (µm) 
Contact 

Height (%) 
d (µm) 

Peak Force 

(µN) 

Deformation 

Stress (MPa) 

1 69.8 55 5.3 73 192 

2 78.9 58 4.5 51 252 

3 109.4 57 6.8 21 43 

3sliding 109.4 26 6.8 187 168 

4 77.4 58 8.3 33 26 

5 92.4 73 5.0 149 778 

6 52.8 64 8.3 1059 617 

7 55.8 53 8.8 279 120 

 

3.5 Discussion 

 The first observation in the testing was that the whiskers did not break off as 

expected.  Since they are single crystal grows it was expected that the structure would be 

brittle and fracture when excessive force was applied.  Instead the structure yielded 

plastically.  Within the resolution of the capture microscope no spring back was noted with 

any whisker.  However it is clear from the capture images that the bulk of the whisker body 

remained straight throughout the testing.  This leads to one of two conclusions: that the very 

root of the whisker was yielding where the bending moment was the greatest or the 

surrounding grain structure where the whisker grew was yielding.  The samples have been 

sent back to the lab to try to determine from SEM imaging which is the case. 

 Looking at the data for the one test done with the sliding method it is apparent that 

there was stick-slip behavior where the tangential force would build up then suddenly the 

probe tip would release and the tangential force would jump down before building again.  

This happened several times on the substrate leading up to the whisker and even on the 

whisker itself once the yielded angle allowed the probe to begin sliding over the whisker.  

These slips could be from normal friction, but they could also be from other small whiskers 

or plating nodules.  The data supports previously stated concerns that the sliding method 

should be avoided due to uncertainly with the testing conditions and this data was discarded. 



www.manaraa.com

 33

 The data for the incremental step tests (sample 1-3) did show a rise in tangential force 

when in contact with the whisker, but this rise was quite small in contrast to the noise present 

in the data.  The fact that a moving average was needed to filter out the noise leads to 

concerns about the validity of the data.  For this reason the first three samples measured with 

the incremental steps was discarded. 

 The remaining samples that were tested in one smooth motion exhibited a clear rise in 

tangential force while in contact with the whisker and a drop once the probe tip had passed 

over the whisker.  Sample 4 did exhibit noise and force measurements that were similar in 

magnitude and for this reason was discarded.  The remaining samples 5, 6 and 7 all showed 

some noise, but it was low relative to the peak force measured.  This noise was most likely 

due to acoustic vibrations or slight slipping on the whisker as force was applied.  The higher 

point of force application precluded any questions about interference from short surrounding 

whiskers.  Examination of the normal forces of sample 6 and 7 show effectively no normal 

force before and after contact whisker contact with an increased measurement when applying 

force to the whisker.  This validates that the probe only came in contact with the subject 

whisker.  Sample 5 showed similar measurements but had a residual normal and tangential 

force after force application.  This was due to the probe not traveling far enough to entirely 

pass over the whisker.  The whisker remained in contact with the underside of the probe 

causing the residual forces. 

 When examining the peak forces measured they were all on the order of 1 mN or less.  

For a device that is design to measure up to 200 mN this is extremely low in the working 

range.  Error from acoustic or structural vibration could greatly influence the results.  

Looking at the calculated stress results is it hard to know if the great variability (ranging from 

120 to 778 MPa) was due to introduction of error or to whisker variability.  To resolve this 

question the working range of the microtribometer must be lowered to something more 

appropriate for the expected values, and error sources such as acoustic vibration must be 

better controlled.  This is normally done with an enclosure over the test set up but the 

required microscope equipment prevented its use for this test. 

 Another factor to consider when looking at the variability of the measurements is the 

crystal orientation.  Since tin whisker crystals are know to grow in a variety of directions, the 
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orientation could have a large impact on the force required to deform the whisker.  Looking 

at sample 6 and 7 it can be seen that their diameter is nearly the same but their deformation 

stress was an order of magnitude different.  Crystal orientation could be a factor in this 

difference. 

 Ignoring the sources of variability and examining the deformations stresses of the 

three valid measurements, it is noted that two of them are above 220 MPa, the ultimate 

tensile strength of bulk tin, and one is lower.  These values were compared to the plots of 

section 2.4.2.  It was clear that under the typical loading whiskers less than 2mm in length 

would not resonate in response to forcing at 2000 Hz, and would not experience stresses 

greater than measured in the experiment.  Smaller whiskers simply are too light and too stiff 

for inertial loading typically seen in electronics to cause deformation.  Only whiskers of 

length greater than 2 mm (and longer at larger diameters) would see resonance and stresses 

large enough to cause deformation.  Only the combination of very long whiskers, small 

diameters and heavy loading is likely to cause a whisker break due to inertial loading. 

 



www.manaraa.com

 35

4. Future work 

4.1 Modeling 

 Although reported typical values for tin whiskers were on the order of 1mm length 

and 1-4 µm diameters, the whiskers found on the samples prepared for property analysis were 

much shorter and somewhat thicker.  Given the approximate length of 100 µm and a diameter 

of 4-6 µm the slenderness ratio of the samples was 16-25.  This was far less that the threshold 

of 100 used to validate the selection of the Euler-Bernoulli model.  If analysis of short 

whiskers, on the order of 500µm or less, is desired in the future the Timoshenko model 

should be considered to increase accuracy.   

 Additional input types should be added such as shock loading and random vibration.  

Since eigenfunction expansion is already being used it is a natural extension to use a Fouier 

series to represent a shock loading, and the forcing function in the model.  For random 

vibration there are methods of casting the equation of motion for principle coordinates into 

the frequency domain and then solving for mean square values of the displacement.  This 

method is straight forward and should be adaptable to the eigenfunction expansion problem. 

4.2 Measurements 

 There are many additional avenues of research that would aid in the development of a 

more accurate risk assessment model.  First and fore most would be the refinement of the 

forces and stresses developed in this experiment.  With a basis of design a microtribometer 

arm of appropriate dimensions and strain gauges could be developed that would allow more 

accurate measurement of the whiskers.  Another important factor to consider is the crystal 

orientation.  This crystal orientation should be measured prior to force application and 

deformation measurements to determine if there is a directional dependence.  These two 

factors should be combined with an increase in sample size to give a better statistical 

measurement base. 

 Dampening present in the whiskers would be another important issue especially in 

longer whiskers that would experience resonance.  Without dampening ratio the model 

becomes very inaccurate near resonance as the displacement amplitude climbs without 
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bound.  Fatigue stress could also be studied to aid in the development of a risk model.  

Vibration levels may not be enough to deform whiskers under low cycle stress but prolonged 

exposure are certain amplitudes could lead to high cycle fatigue life failures and greater 

potential risk. 
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Appendix A Matlab Code 

clear;  
  
%-------------------------------------------------- -----------------------  
%Global loop2 for parameter variation  
zz=1;                    %initialize global loop index  
%for gll=1:1:10;          %global loop  
  
  
%-------------------------------------------------- -----------------------  
%Global loop for parameter variation  
z=1;                     %initialize global loop index  
%for gl=1:1:10;          %global loop  
  
  
%-------------------------------------------------- -----------------------  
%Variables used in calculations  
n=1;                    %indexing variable  
x=sym( 'x' );             %define x as a symbolic variable for integration  
t=sym( 't' );             %define t as a symbolic variable for integration  
T=sym( 'T' );             %define T as a symbolic variable for integration  
  
  
%-------------------------------------------------- -----------------------  
%Resolution Parameters of problem  
maxev=15;               %maximum number of eignevalues to find  
%maxev=gl;              %maximum number of eigneval ues to cycle in  global 
loop  
res=0.001;              %resolution to calculate eigenvalues (low 
resolution, refined later)  
ts=100;                 %number of time steps  
  
format short  
  
  
%-------------------------------------------------- -----------------------  
%User Defined Parameters  
d=2e-6;                 %whisker diameter  
%d=1e-6*gl;             %whisker diameter - Global Loop  
  
l=1000e-6;              %whisker length  
%l=100e-6*gl;           %whisker length - Global lo op 
  
p=5765;                 %whisker density  
E=220e9;                % whisker modulus  
  
 
%Ipos=(.05*l)*x;        %initial deflection  
%Ivel=(.05*l)*x;        %initial velocity  
Ipos=0;                 %initial deflection from rest  
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Ivel=0;                 %initial velocity  
G=5;                    %Gs level form vibration test  
%G=gl*1;   %Gs level – Global loop  
 
omega=2000;            %forcing frequency  
%omega=100*gl;          %forcing frequency - Global  loop  
  
%-------------------------------------------------- -----------------------  
%Derived  Parameters 
 
r=d/2;                  %whisker radius  
A=3.14*(r^2);           %whisker crossectional area  
I=((d^4)*(pi))/64;      %whisker moment of inertia  
m=(A*l)*p;              %whisker mass  
c=((E*I)/(p*A))^0.5;    %combination constant  
  
g=9.80665;              %standard gravity  
a=G*g;                  %acceleration  
F=(m*a)/l;              %Force per meter applied force  
force=F*sin(omega*t);   %forcing function  
 
tres=1/(2.1*omega);     %time resolution  
tmax=ts*tres;           %time maximum  
  
%-------------------------------------------------- -----------------------  
%plot of the frequency equation  
  
n=1;  
for  k=0:res:100;     
y(n)=(cos(k)*cosh(k))+1;  
n=n+1;  
end  
  
%-------------------------------------------------- -----------------------  
%looks for values of zero indicating an eigenvalue (low resolution)  
  
k=0:res:90;                %sets range to look for eigenvalues  
counter=1;                 %defines a counter varable to count how many 
        eigenvalues have been found  
bl=zeros(1,maxev);         %defines a matrix to store the eigenvalues  
thresh = 0;                %defines the trigger point  
  
for  i=1:length(y)-1     
    if  counter<=maxev  
        if (y(i+1)>thresh & y(i)<=thresh)  
            bl(counter)=k(i);  
            counter=counter+1;  
        elseif  (y(i+1)<thresh & y(i)>=thresh)  
            bl(counter)=k(i);  
            counter=counter+1;  
        end  
    end  
end  
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%-------------------------------------------------- -----------------------  
%Takes low resolution eigenvalues and uses them for  an initial guess in 
the fzero function to find eigen values to the full  double floating point  
resolution  
  
for  i=1:1:maxev;                         
bl(i)=fzero( 'cos(x)*cosh(x)+1' ,bl(i));  
end  
  
n=1;  
for  k=0:res:90;  
v(n)=(cos(k)*cosh(k)+1);  
n=n+1;  
end  
  
  
%-------------------------------------------------- -----------------------  
%beta only component of the eigenvalues (bl)  
 
b=bl/l;  
  
%-------------------------------------------------- -----------------------  
%natural frequencies associated with eiganvalues in  hertz 
 
w=((bl.^2)*(((E*I)/(p*A*(l^4)))^.5));  
  
%-------------------------------------------------- -----------------------  
%Eigenfunctions associated with eiganvalues (bl) 

 
for  i=1:1:maxev;            %indexing cycle (1 through max number of  
     eigenvalues)  
efunction(i)=((sin(b(i)*x))-(sinh(b(i)*x)))-
((((sin(bl(i)))+(sinh(bl(i))))/((cos(bl(i)))+(cosh( bl(i)))))*((cos(b(i)*x)
)-(cosh(b(i)*x))));  
end  
  
for  i=1:1:maxev;        %loops eigenvalues for the next 3 sections  
%-------------------------------------------------- -----------------------  
%Equation of generalized force  
  
integrand1(i)=force*efunction(i);   %integrand of generalized force  
      (forcing x eiganvenctor)  
Q(i)=((int(integrand1(i),x,0,l)));   %generalized force  
  
  
%-------------------------------------------------- -----------------------  
%Calculates the transformed initial position values  
  
integrand2(i)=efunction(i)*Ipos;      %integrand of initial position  
         Coeficient  
IposC(i)=eval(int(integrand2(i),x,0,l));    %Initial position coefficient  
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%-------------------------------------------------- -----------------------  
%Calculates the transformed initial velocity values  
  
integrand3(i)=efunction(i)*Ivel;      %integrand of initial velocity  
         Coefficient  
IvelC(i)=eval(int(integrand3(i),x,0,l));    %Initial velocity coefficient  
  
end  
  
  
%-------------------------------------------------- -----------------------  
%Calculation of An  
  
for  i=1:1:maxev          %cycles through the eigenvalues  
An(i)=IposC(i)-((1./(w(i)-omega))*(1/(p*A))*(Q(i))) ;  
end  
  
  
%-------------------------------------------------- -----------------------  
%Calculation of Bn 

 
for  i=1:1:maxev          %cycles through the eigenvalues  
Bn(i)=(1./w(i))*(IvelC(i)-(diff(((1./(w(i)-omega))* (1/(p*A))*(Q(i))),t)));  
end  
  
  
%-------------------------------------------------- -----------------------  
%Plot eigenfunctions 

 
modeshape=zeros(maxev,100);  
  
for  i=1:1:maxev;  %cycles through the eigenvalues  
  
n=1;   
for  x=0:(l/100):l; %evals eigenfunctinos across length  
modeshape(i,n)=eval(efunction(i));  
n=n+1;  
end  
  
modeshapemax(i)= max((modeshape(i,:)));  
end   
  
%for i=1:1:maxval; %Normalizes eigenfunctinos  
%modeshape(i,:)=modeshape(i,:)/modeshapemax(i);  
%end 
  
%figure(1);   %Plots mode shapes  
%x=0:(l/100):l;                      %Cylces though  time domaine  
%plot(x,modeshape(:,:));             %Plot tip defl ection vs time  
%%axis([0 20 -1e-23 1e-23]);         %plot axis con trol  
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%grid;                               %add a grid  
%ylabel('Length (m)');  
%xlabel('displacment');  
%title('Mode Shapes');  
 
  
%-------------------------------------------------- -----------------------  
%Eval of An 
 
t=0;  
for  i=1:1:maxev;          %cycles through the eigenvalues  
AnE(i)=eval(An(i));  
end  
  
%-------------------------------------------------- -----------------------  
%Eval of Bn 
 
t=0;  
for  i=1:1:maxev;          %cycles through the eigenvalues  
BnE(i)=eval(Bn(i));  
end  
  
%-------------------------------------------------- -----------------------  
%Calculation of the generalized coordinate 
 
for  i=1:1:maxev          %cycles through the eigenvalues  
q(i)=((AnE(i)*cos(w(i)*t))+(BnE(i)*sin(w(i)*t))+((1 /(w(i)-
omega))*(1/(p*A))*(Q(i))));  
end  
  
  
%-------------------------------------------------- -----------------------  
%Calculation of the mode superposition solution 
 
for  i=1:1:maxev           %cycles through the eigenvalues  
u(i)=efunction(i)*q(i);    %generalized coordinate * mode shapes 
(eigenfunctions)  
end  
  
%-------------------------------------------------- -----------------------  
%Calculation of the bending moment 
 
for  i=1:1:maxev           %cycles through the eigenvalues  
M(i)=E*I*(diff(u(i), 'x' ,2));       %define sybolic equation for   
      moment, based on total solution u  
end  
  
 
 
 
 
%-------------------------------------------------- -----------------------  
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%Plot of whisker tip deflection vs time. 
 
n=1;                                %counter reset  
x=l;                                %Set x to whisker tip, maximum 
deflection  
  
for  t=0:tres:tmax;                  %Cylces though time domaine  
u1=eval(u);                         %evaluates total solution (u) at each 
time (t), for each eigenvalue (n), and stores in u1  
u2(n)=sum(u1');                     %Sums the evaluated eigenventors in u1 
and stores them in u2  
n=n+1;                              %cycles though eigenvalues, for each 
time step  
end  
  
        
%figure(2);  
%t=0:tres:tmax;                      %Cylces though  time domaine  
%plot(t,u2);                         %Plot tip defl ection vs time  
%%axis([0 20 -1e-23 1e-23]);         %plot axis con trol  
%grid;                               %add a grid  
%ylabel('Displacement (m)');  
%xlabel('time (s)');  
%title('Displacement at Whisker Tip');  
 
%-------------------------------------------------- -----------------------  
%Calculation of dynamic moment. 
 
n=1;                                %counter reset  
x=0;                                %Set x to whisker base, maximum moment  
  
for  t=0:tres:tmax;                  %Cylces though time domaine  
M1=eval(M);                         %evaluates moment(M) at each time (t), 
for each eigenvalue (n), and stores in M1  
M2(n)=sum(M1');                     %Sums the evaluated moments in M1 and 
stores them in M2  
n=n+1;                              %cycles though eigenvalues, for each 
time step  
end  
  
%t=0:tres:tmax;                      %Cylces though  time domaine  
%plot(t,M2);                         %Plot moment v s time  
%axis([0 20 -5e-29 5e-29]);         %plot axis cont rol  
%grid;                               %add a grid  
  
  
%-------------------------------------------------- -----------------------  
%Calculation of dynamic bending stress at whisker r oot  
  
for  t=0:tres:tmax;                  %Cylces though time domaine  
BS=(M2*r)/I;                        %calculate bending stress  
end  
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%figure(3);  
%t=0:tres:tmax;                      %Cylces though  time domaine  
%plot(t,BS);                         %Plot stress v s time  
%%axis([0 20 -1e-11 1e-11]);         %plot axis con trol  
%grid;                               %add a grid  
%ylabel('Stress (Pa)');  
%xlabel('time (s)');  
%title('Bending Stress at Whisker Root');  
 
%-------------------------------------------------- -----------------------  
%Storage vectors for global loop  
  
u2max(zz,z)=max(u2);  
u2min(zz,z)=min(u2);  
BSmax(zz,z)=max(BS);  
BSmin(zz,z)=min(BS);  
%nd(zz,z)=((l^4)*((p*A)/(E*I)));  
dplot(zz,z)=1/(d^2);  
z=z+1;  
end  
  
%for z=1:1:10;  
%u2maxnd(zz,z)=u2max(zz,z)/nd(zz,z);  
%end 
  
%zz=zz+1;  
%end 
  
%figure(5);  
%i=1:1:z-1;                            %Cylces thou gh each global loop  
%plot(i*1000,u2max);                      %Plot max  tip displacment vs 
global loop  
%axis([0 20 -1e-11 1e-11]);         %plot axis cont rol  
%grid;                               %add a grid  
%ylabel('Displacment (m)');  
%xlabel('Forcing Frequecy (Hz)');  
%title('Maximum Tip Displacment vs Forcing Frequenc y');  
 
%figure(6);                          %zoomed fig 5  
%i=1:1:z-1;                          %Cylces though  each global loop  
%plot(i,u2max);                      %Plot max tip displacment vs global 
loop  
%axis([0 15 3.415e-5 3.43e-5]);         %plot axis control  
%grid;                               %add a grid  
%ylabel('Displacment (m)');  
%xlabel('Total Eigenvalues');  
%title('Maximum Tip Displacment vs Number of Eigenv alues');  
 
%figure(7);  
%i=1:1:z-1;                            %Cylces thou gh each global loop  
%plot(i,BSmax);                         %Plot stres s vs time  
%axis([0 20 -1e-11 1e-11]);         %plot axis cont rol  
%grid;                               %add a grid  
%ylabel('Stress (Pa)');  
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%xlabel('Forcing Frequecy');  
%title('Bending Stress vs Forcing Frequecy');  
 
%figure(8);  
%i=1:1:z-1;                            %Cylces thou gh each global loop  
%[AX,H1,H2] = plotyy(i*1,u2max/1e-6,i*1,dplot,'plot ');  
%set(get(AX(1),'Ylabel'),'String','Displacment (\mu m)');  
%set(get(AX(2),'Ylabel'),'String','Displacment(non dimentional)');  
%xlabel('Diameter (\mum)');  
%%title('Whisker Diameter Dependance of Displacment  and Stress');  
%%set(H1,'LineStyle','--')  
%set(H2,'LineStyle',':')  
%legend(AX(1),'Displacment',2);  
%legend(AX(2),'1/(d^2)');  
%legend(AX,'Displament','Stress',2);  
  
%figure(9);  
%t=0:tres:tmax;                            %Cylces though each global loop  
%[AX,H1,H2] = plotyy(t*1e3,u2/1e-6,t*1e3,BS/1e6,'pl ot');  
%%[AX,H1,H2] = plotyy(t*1e3,u2(1,:)/((1e-6)*(nd(1)) ),t*1e3,u2(2,:)/((1e-
6)*(nd(2))),'plot');  
%set(get(AX(1),'Ylabel'),'String','Displacment (\mu m)');  
%set(get(AX(2),'Ylabel'),'String','Stress (MPa)');  
%xlabel('Time (ms)');  
%%title('Whisker Diameter Dependance of Displacment  and Stress');  
%%set(H1,'LineStyle','--')  
%set(H2,'LineStyle',':')  
%legend(AX(1),'Displacment',2);  
%legend(AX(2),'Stress');  
%%legend(AX,'Displament','Stress',2);  
  
  
%for j=1:1:zz-1;  
%for i=1:1:z-1  
%d(j,i)=j;  
%end 
%end 
  
%figure(9);  
%for j=1:1:zz-1;                       %Cylces thou gh each global loop2  
%i=1:1:z-1;                            %Cylces thou gh each global loop  
%plot3(i*100,d(j,i),(u2max(j,i))/(1e-6));                         %Plot 
stress vs time  
%%axis([0 20 -1e-11 1e-11]);         %plot axis con trol  
%grid on;                               %add a grid  
%hold on;  
%ylabel('Diameter (\mum)');  
%xlabel('Length (\mum)');  
%zlabel('Displacment(\mum)');  
%%title('Bending Stress vs Forcing Frequecy');  
%end 
  
 
%figure(10);  
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%for j=1:1:zz-1;                       %Cylces thou gh each global loop2  
%i=1:1:z-1;                            %Cylces thou gh each global loop  
%plot3(i*100,d(j,i),(BSmax(j,i))/(1e6));                         %Plot 
stress vs time  
%%axis([0 20 -1e-11 1e-11]);         %plot axis con trol  
%grid on;                               %add a grid  
%hold on;  
%ylabel('Diameter (\mum)');  
%xlabel('Length (\mum)');  
%zlabel('Stress (MPa)');  
%%title('Bending Stress vs Forcing Frequecy');  
%%legend([ ' third mode frequency =', num2str(modes (3))]);  
%end 
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Appendix B  SEM images of tin whisker samples 

Sample 1 

 

 

Sample 2 
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Sample 3 

 

 

Sample 4 
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Sample 5 

 

 

Sample 6 
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Sample 7 

Scale measured from images 
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Appendix C Microtribometer Sample Images and Force 

Sample 1 

 Initial Contact Mid Contact 
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Sample 2 

 Initial Contact Mid Contact 
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Sample 3 

Non Contact Method 

 Alignment Initial Contact 

 

 Mid Contact End Contact 

 

Contact (sliding) Method 
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Non Contact Method 

 

 



www.manaraa.com

 58

Contact (sliding) Method 

 

 

 



www.manaraa.com

 59

 

Sample 4 

 Initial Contact Post Contact 
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Sample 5 

 

 Initial Contact Post Contact 
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 Sample 6 

 

 Initial Contact Post Contact 
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Sample 7 

 

 Initial Contact Post Contact 
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